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n  Problem in MPI RMA-based PGAS n  Solution: Casper −− Process-based Asynchronous Progress Model [2] 
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n  Core concept 
•  #cores is rapidly growing 
•  Not all of the cores are always keeping busy 
•  Dedicate small & user-specified number of 

cores to ghost processes 
•  Ghost process intercepts all RMA operations to 

the user processes 
•  Improve ASYNC progress for SW-handled 

operations without affecting HW-handled RMA 

ü  No multithreading or interrupt overhead 
ü  Flexible core deployment 
ü  Portable PMPI* redirection 

n  Three Primary Functionalities 
1.  MPI_COMM_WORLD          COMM_USER_WORLD  
2.  Shared memory mapping between local user 

and ghost processes (MPI-3 
MPI_Win_allocate_shared ) 

3.  Redirect RMA operations to  ghost processes. 

Yutaka Ishikawa (Advisor)  
RIKEN AICS, JAPAN  

yutaka.ishikawa@riken.jp  

n  Problem in hybrid MPI + Threads n  Solution: MT-MPI −− Sharing Idle Threads with Application inside MPI [1] 

 

 

#pragma omp parallel 
{ /* User Computation */ } 
 
MPI_Function ( ); 

Funneled Mode  

#pragma omp parallel 
{ /* User Computation */ } 
 
MPI_Function( ){ 

#pragma omp parallel 
{ /* Internal Processing */ } 

} 

n  OpenMP Runtime Extension 
•  Expose number of IDLE threads 

 

n  MPI Internal Parallelism 
1.  Derived datatype processing 
2.  SHM communication 
3.  InfiniBand network 
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Part I.  Multithreaded MPI for Hybrid MPI+Threads Model 
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•  Thread Funneled or Serialized mode  
•  Multiple threads parallelize computation 
•  Only one thread issues MPI calls 
•  Most cores are IDLE during MPI Calls 

•  Suitable for applications with large 
memory requirements. (i.e., NWChem) 

 
 
 

•  MPI RMA is not truly asynchronous 
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In this thesis, we investigate the characterist-
ics of MPI on massively parallel many-core 
architectures and propose efficient strategies 
for two most popular programming models:  

 

• Improving core utilization and commu-
nication for the hybrid MPI+thread model; 

• Efficient process-based asynchronous 
progress for the MPI one-sided communica-
tion model. 

n  Many-Core 
•  Massively parallel environment 
•  Intel® Xeon Phi  
•  Blue Gene/Q 
 

n  Hardware Characteristics 
•  Simple & low frequency core design 
•  #core increases faster than other on-

chip resources 
 

Background 

n  Parallelism and Resource Sharing in Scientific Applications 
2.  MPI RMA-based PGAS model 
ü Memory sharing across nodes  

1.  Hybrid MPI+threads model 
ü Massive parallelism in computation 
ü On-chip resource sharing between threads 
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NWChem Quantum Chemistry Suite 
 

NERSC Edison Cray XC30 
Input tce_c20_triplet  
Compute-intensive CCSD(T) simulation	
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•  Correctness challenges 
    i.e.  lock permission, self lock consistency,       
           simultaneous epochs…  
•  Performance challenges 
    i.e.   Memory locality 

•  Algorithms tradeoff 
-  Number of IDLE 

threads is unknown. 

•  Nested parallelism 
-  Creates new Pthreads and 

offloads scheduling to OS  
-  Threads overrunning. 

n  Challenges 

n  Correctness and Performance challenges 
•  Ensuring correctness 
1. Lock permission for shared ghost processes 
2. Managing multiple ghost processes 
3. Self lock consistency 
4. Multiple simultaneous epochs 
•  Ensuring performance 
1. Memory locality 
	


Hybrid NAS MG - class E 
using 64 MPI processes 

n  Traditional ASYNC Progress 
 

× Overhead of frequent interrupts 

× Waste half cores or oversubscription 
× Multithreading overhead in MPI 

1.  Thread-based Approach 
•  Per-MPI process background thread 

 

2.  Interrupt-based Approach 
•  Per-operation hardware interrupts 

awaken kernel thread 


